

1

Archive material from

Edition 2

 of Distributed Systems:
Concepts and Design

© George Coulouris, Jean Dollimore & Tim Kindberg 1994

Permission to copy for all non-commercial purposes is hereby granted

Originally published at p. 102 of Coulouris, Dolllimore and Kindberg, Distributed Systems, Edition 2, 1994.

Sun XDR

External data representation

◊

Sun XDR (External Data Representation) [Santifaller 1991; Sun
1990] and Courier [Xerox 1981] are examples of standards defining a representation for the
commonly used simple and structured data types including strings, arrays, sequences and records.
The Sun XDR standard was developed by Sun for use in the messages exchanged between clients
and servers in Sun NFS (see Chapter 8).The Courier standard was developed by Xerox and is used
in the ANSA testbench (Chapter 5).

The type of a data item is not given with the data representation in the message in either of
these standards. In contrast, the ASN.1 (Abstract Syntax Notation) standard [CCITT 1985]
provides a notation for defining the type as part of the representation of each item. The Mach
distributed operating system (Chapter 18) ‘tags’ each item of data in a message with its type.
However, it is not necessary to label message items with their types when messages are used in a
context in which sender and recipient have common knowledge of the order and types of the items
in a message.

Figure 0.1 shows a message in the Sun XDR external data representation in which the entire
message consists of a sequence of 4-byte objects using a convention that a cardinal or integer
occupies one object and that strings of four characters also occupy an object. Arrays, structures and
strings of characters are represented as sequences of bytes with the length specified. Characters are
in ASCII code. A further convention defines which end of each object is the most significant and,
when characters are packed, which of the four bytes comes first. The use of a fixed size for each
object in a message reduces computational load at the expense of bandwidth.

Figure 0.1 XDR message.

 5 length of sequence

" S m i t " ‘Smith’

" h _ _ _ "

 6 length of sequence

" L o n d " ‘London’

" o n _ _ "

 1 9 3 4 CARDINAL

4 bytes

The message is: ‘Smith’, ‘London’, 1934

SUN XDR

2

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

References

[Santifaller 1991] Santifaller. M. (1991).

TCP/IP and NFS, Internetworking in a
Unix Environment

. Reading MA: Addison-Wesley.

[Sun 1990] Sun Microsystems Inc. (1990).

Network Programming

. Sun
Microsystems, Mountain View, CA. March

[Xerox 1981] Xerox Corporation (1981).

Courier: the remote procedure call
protocol. Xerox Systems Integration Standards

. Stamford CT:
Xerox Corporation.

[CCITT 1985] CCITT (1985).

Recommendation X.409

: Presentation Transfer
Syntax and Notation. Red Book, vol. VIII, International
Telecommunications Union, Place des Nations, 1211 Geneva,
Switzerland.

Marshalling by hand: A simple way of marshalling by hand is to convert the items to
an array of ASCII characters before transmission. For example, the marshalled
message corresponding to Figure 0.1 might contain the following sequence of
characters:

5 Smith 6 London 1934

In C programs, sprintf may be used to convert data items to an array of characters and
sscanf may be used to retrieve the data items form an array of characters. For
example, the sending program might include:

char *name = "Smith", place = "London"; int year = 1934;
sprintf(message, "%d %s %d %s %d",

strlen(name), name, strlen(place), place, year);

The receiving program will then convert the characters in the incoming message into
values for name, place and year. This method of marshalling is wasteful of
bandwidth.

