
 

Distributed Systems, Edition 3: Note on correctness 1

 

Last updated: 25 February 2003  

 

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

 

Chapter 11: 
Correctness and the Consensus Problem

 

Tim Kindberg, February 2003

I am indebted to Christian Worm Mortensen for an exchange about the notion of “correctness” that led to the
following observations.

On p. 422, we define correctness informally thus: “Whatever the type of failure, a 

 

correct

 

 process is one
that exhibits no failures at any point in the execution under consideration.” However, there may sometimes be
ambiguity in what we should consider “the execution under consideration”.  

Take the reduction of 

 

RTO-multicast

 

 to consensus on p. 455, which deals only with crash failures.  Recall
that the reduction  proceeds by having all processes 

 

RTO-multicast

 

 their proposed values, and by each process
choosing the first value to be reveived.  Recall also that the definition of Integrity for Consensus (p. 452) is as
follows:

 

Integrity

 

:

 

  

 

If the correct processes all proposed the same value, then any correct process in the 

 

decided

 

 state
has chosen that value. 

Now suppose in our reduction that the process whose value was delivered first failed immediately after
sending it.  If that process had chosen a different value from all the correct processes that delivered its message,
would that not violate the Integrity property for Consensus?

It depends on what we take to be the events in the execution under consideration.  If we take the
execution under consideration to end when all events at all processes that took part in this protocol have taken
place, then the process that sent the chosen value was not correct for the duration of that execution and integrity
was broken.

However, it can also be argued that the spirit of Integrity in Consensus should be to take Integrity as
referring to correctness up to two distinct points in the execution for each individual process: the point of
proposal and the point of decision.  Any process that proposed a value (that is, one that 

 

initiated

 

 a call to 

 

RTO-
multicast

 

) was correct at the first point.  It is the values of all such processes that should be considered in
verifying Integrity, since all such values are good enough for consideration (assuming that there are no
Byzantine failures).  If the crashed process proposed a unique value, then the antecedent of Integrity’s
conditional does not apply and Integrity is not broken.

As we point out on page 452, other definitions of Integrity may also be deemed appropriate and occur
in the literature.  We invite the reader to consider what definition should be used in the case of some practical
applications.

 

Distributed Systems: Concepts and Design

 

Edition 3 

 

By George Coulouris, Jean Dollimore and Tim Kindberg
Addison-Wesley, ©Pearson Education 2001


